

PAF 2018 Tailored P&A fluid for PW&C operations

Gunnar Lende & Duncan Clinch Technical Managers Halliburton Cementing & Baroid Norway

© 2018 Halliburton. All rights reserved.

Incentive for new integrated P&A mud and spacer for PW&C operations

Large volume of spacer consumed due to nature of operation

Mixing

Handling

Pumping

Waste, etc.

Spacer contains surfactants

Massive mud contamination due to pump & pull operation

Spacer contaminates mud → surfactants in mud →Mud foaming problems

→ mud soon becomes useless and has to be disposed of

Idea for new integrated P&A mud and spacer for PW&C operations

Instead of concentrated surfactants in spacer with short exposure time:

- Low concentration in P&A fluid with long exposure time
- Save time by integrating spacer and P&A mud into one fluid

Make environmentally friendly so can discharge

May trigger formation swelling to finish the job

Expanding cement + formation creep

➔ best possible sealing potential

HALLIBURTON

Challenges for new integrated P&A mud and spacer for PW&C operations

Can a standard drilling fluid act as spacer for cement?

Answer is NO!

Many chemicals used in drilling fluid are generally not OK to get into the cement

- Excessive retardation, or
- **Excessive acceleration**
- Unacceptable strength development
- Excessive viscosity and gelation
- Unmanageable placement complications Practical problems on rig

Challenges for new integrated P&A mud and spacer for PW&C operations

Can a standard drilling fluid act as spacer for cement?

Answer is NO!

Chemicals used in drilling fluid generally not OK to get into the cement

- Excessive retardation, or
- Excessive acceleration

Unacceptable strength development

- Excessive viscosity and gelation Unmanageable placement complications
- Practical problems on rig

20:80 mud:cement example

Solution for new integrated P&A mud and spacer for PW&C operations

Can we make a P&A fluid that can act as spacer for cement?

Answer is YES

Select/develop chemicals compatible with cement,

but still do the job in mud,

and be environmentally acceptable for discharge

Tailor design to application (understand formation response!)

Careful testing and iterative development until optimized

Application window may be very narrow

Short term life span and quite possibly unsuitable for drilling

Design criteria for new integrated P&A mud and spacer for PW&C operations

Compatible with the cement design

Sea water based (may trigger slow formation swelling)

Suitable for the Perf, Wash & Cement operation

High velocity nozzle exposure, high ΔP ;

PLUS low shear cmt plug placement inside pipe

Intermixing with behind the casing material (barite, cuttings, old mud, etc.)

Cuttings lifting capacity

Environmentally acceptable materials only (OSPAR/SKIM Y1 or better)

Non-foaming surfactants

Topside work environment friendly

Easy to mix

Reasonable cost

Working the problem

Cumbersome lab work on both cement and mud side Multiple iterations

Essential <u>collaboration</u> between mud design engineer and cementing design engineer Most mud chemicals have negative impact on cement \rightarrow useless in a spacer

So how did it go?

After a lot of work:

Halliburton Cement Norway worked with both A/MI and Baroid to develop solution Not perfect but an acceptable compromise Highly tailored to application Several new mud additives introduced Modified AbandaCem slurry design Successful field implementation Acceptable OK for mud OK for cement both

Fluid test results (last job)

Fluid compatibility tests:

100% criteria

(Limit = 2 x highest; ½ x lowest)

VS

Max & Min reading recorded

Post job test results

confirmed

Pre-job test results

Spacer reference

Fluid compatibility tests:

Purpose made spacer example

(EcoSpacer II)

100% criteria

Fluid test results (last job)

Impact on strength development

Minimal impact from chemicals at moderate dilution

Then retardation at 40/60

A heavily diluted cement will not have the necessary low permeability to be a barrier

Or it is so contaminated it is not a continuous plug

→Contamination greater than 20 – 30 % not really of interest

Spacer reference:

Impact on strength development

Purpose made spacer example

(EcoSpacer II)

No retarding chemicals

Dilution only effect seen

Contamination impact on Kw

Cement permeability tests:

 $Kw = H_2O$ permeability

- 5 days curing
- Increasing mud dilution
- Otherwise identical conditions

Who can say what is an acceptable permeability?

The acceptance limit depends on several parameters

At the end of the day the operator has to decide on acceptable leakage rate

Leakage rate comparison

Estimated Darcy flow potential of 0,0109 cP fluid (methane) across 100 m barrier material at $\Delta P = 100$ bar with varying permeability

Diameter is most dominating factor for Darcy flow calculations

Any fracture or micro annulus will throw leak rate off scale

© 2018 Halliburton. All rights reserved

Fluid test results (last job)

Impact on Thickening Time

Key issue is to avoid reduction of pumpable time

No issues seen

P&A fluid field results (last job)

Excellent results for mud field performance

OWR → 1-3% when washing due to OBM behind casing, no negative response

No foaming observed during entire plugging operation

No treatment with Sodium Bicarbonate or Citric Acid necessary

The PWC WBM was extremely stable and well suited for the PWC operations and only minor treatment was required for maintenance

So how did it go?

Last jobs have been successful

No operational issues

Fluid performed as intended

Objective was met

Time effective

