

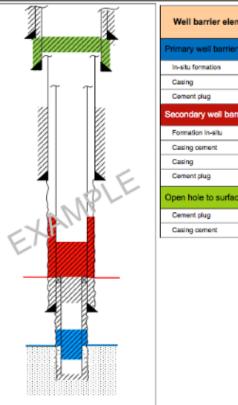
Understanding Leakage Rates in Permanently Abandoned Wells by Studying Natural Hydrocarbon Seepages

Mari Røstvig Tveit Dr. Mahmoud Khalifeh Master student in Petroleum Engineering - Drilling and Well Technology University of Stavanger uis.no

18.10.2018

Agenda

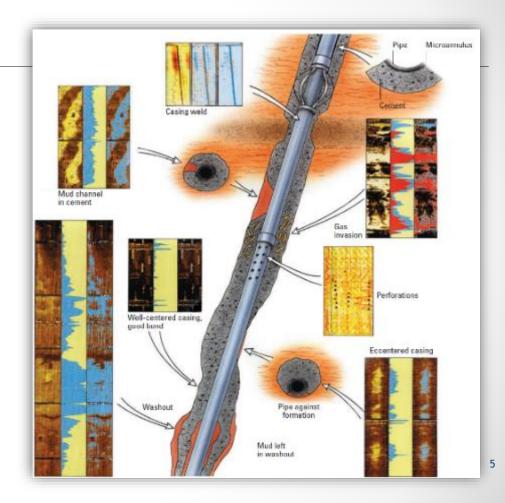
- Objectives
- Why leaks may occur
- Methodology the OSCAR and Gastrack models
- Results and discussion


Objectives

- Studying natural seepages (with a focus on the NCS)
- Quantitative analysis of oil and gas fate after leaking
- Compare seepages with two real case studies (one ocurred gas leak case and a theoretical oil leak case)

Plug & Abandonment

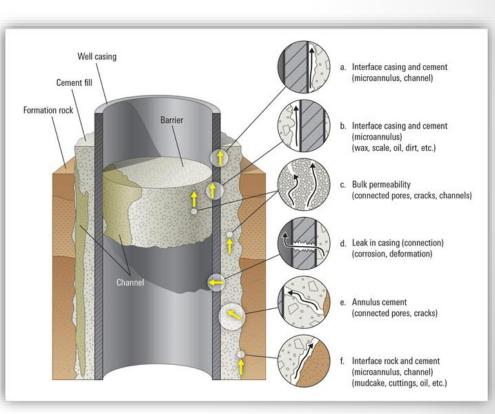
- Wellhead removed
- Leak is detected
- PSA / NORSOK D-010



Well barrier elements	EAC table	Verification/monitoring					
Primary well barrier							
in-situ formation	51						
Casing	2						
Cement plug	24						
Secondary well barrier							
Formation in-situ	51						
Casing coment	22						
Casing	2						
Cement plug	24						
Open hole to surface well barrier							
Cement plug	24						
Casing cement	22						

P&A challenges

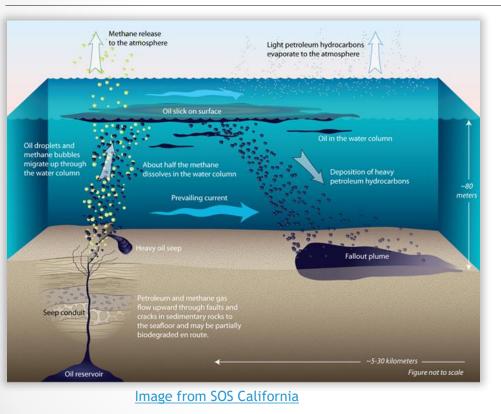
- Deviated wells
- Washout
- Casing collapse
- Formation subsidence
- Cleaning the wellbore



P&A challenges

Operational challenges Material challenges + Human factor + Qualification challenges Risk of leaks?

Zero harm = Zero leak?


Natural hydrocarbon seepages

CGG Geoconsulting, reported seeps across the world

Natural hydrocarbon seepages

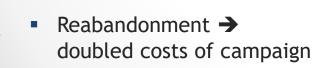
University of

Stavanger

- Release of gas to atmosphere
- Evaporation of light oil components
- Dissolution of gas and oil components in water
- Dispersion / emulsification of oil droplets in water
- Biodegradation
- Sedimentation

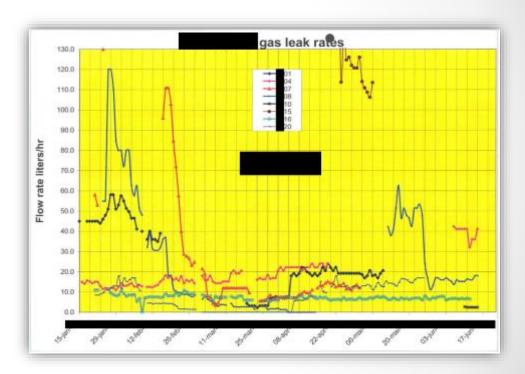
9

MEMW - Marine Environmental Modeling Workbench


MEMW - Framework

- OSCAR & Gastrack
- Ekofisk blowout 1977
- Oil spill R&D

- University of Stavanger
- Appx. 40 experimental oil spills have been conducted since 1978


Case #1 - Field A

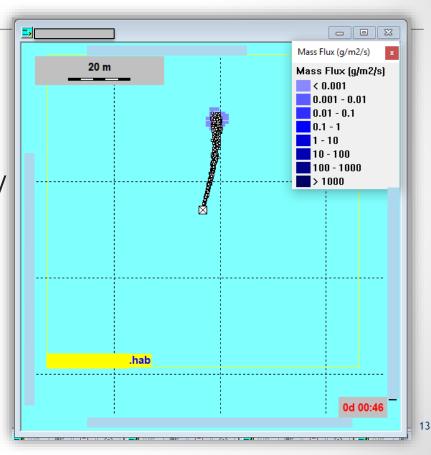
- Platform wells, 70 m
- Was subject to PP&A some years ago
- All wells experienced leaks through annulus
- Gas cut cement during primary cementing

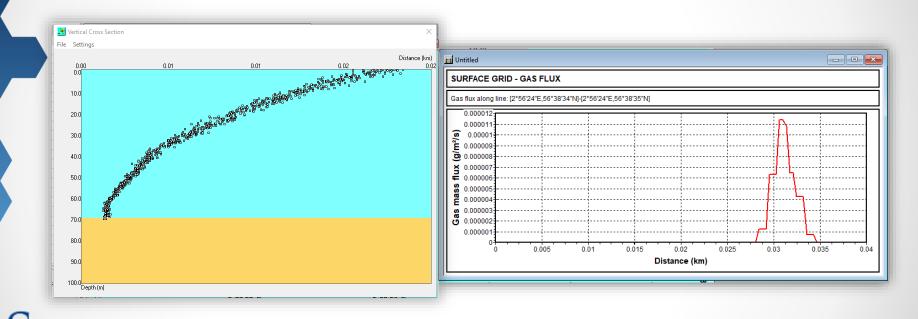
University of

Stavanger

Tommeliten seepage area

- Largest seepage area on the NCS
- Analogue to Field A
- Thermogenic gas
- 4475 l/h


• Atmospheric fraction: 4.5 %



Gastrack

- Simulate pure gas leaks or blowouts
- Track bubbles until surface / they get dissolved
- Surface gas mass flux (mass per time per area)

Gastrack - Output examples

Simulation results by evaluating surface gas mass flux

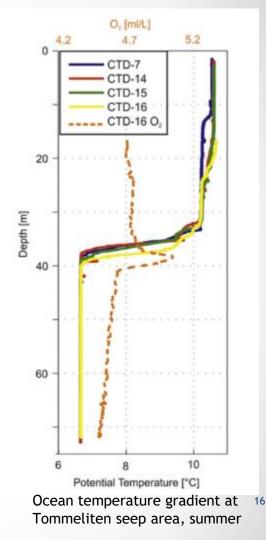
Well	Leak rate	Bubble	Winter (01.02.2014)		Summer (01.08.2014)	
		size	% of gas	% of gas to	% of gas	% of gas to
			dissolved	atmosphere	dissolved	atmosphere
W-04	45 l/h 1.080 Sm³/d	4.5 mm	99.709 %	0.291 %	99.924 %	0.076 %
W-08	120 l/h 2.880 Sm³/d	4.5 mm	99.708 %	0.292 %	99.918 %	0.082 %
W-16	7 l/hr 0.168 Sm³/d	4.5 mm	99.711 %	0.289 %	99.925 %	0.075 %

Why winter and summer simulations?

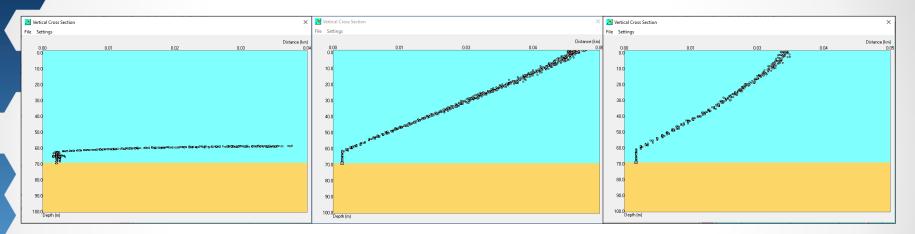
Winter

University of

Stavanger


- Strong wind
- Cold weather

Summer


- Calm weather
- Warm weather
- Thermocline \rightarrow

Vertical mixing

- Stratification
- Increased transport
- Reduced transport

W-16 sensitivity analysis - bubble size

Bubble size = 1 mm

Bubble size = 4.5 mm

Bubble size = 10 mm

Dissolves completely

Reaches atmosphere at appx 53 m

Reaches atmosphere at appx 34 m

W-16 sensitivity analysis - bubble size

Well	Leak rate	Winter (01.02.2014)		Summer (01.08.2014)	
W-16					
Initial		% of gas dissolved	% of gas to	% of gas dissolved	% of gas to
bubble			atmosphere		atmosphere
size					
1 mm	7 l/hr 0.168 Sm³/d	100 %	0.000 %	100 %	0.000 %
4.5 mm	7 l/hr 0.168 Sm³/d	97.108 %	0.289 %	99.925 %	0.075 %
10 mm	7 l/hr 0.168 Sm³/d	95.510 %	4.490 %	96.029 %	3.971 %

Consequences - dissolved gas

Microbial degradation in water column:

$$\mathrm{CH}_4 + 2\mathrm{O}_2 \to \mathrm{CO}_2 + 2\mathrm{H}_2\mathrm{O}$$

- Nutrient link in the food chain
- Ocean acidification
- Oxygen depletion

University of

Stavanger

Offshore gas seep off the coast of Virginia, USA Credit: NOAA Okeanos Explorer program 2012 / 2013

19

Contribution compared with natural seepage

Field A

- Worst-case scenario: 120 l/h
- Area: 31,700,000 m²

Tommeliten seep area

- Seepage rate: 4475 l/h
- Area: 139,900 m²

If the leak from wells in Field A were as intense as natural seepage, what would the leakage rate be?

Answer: 1,013,992 l/h

One well leaking 120 l/h = **2.7 %** of Tommeliten seeps

Stavanger

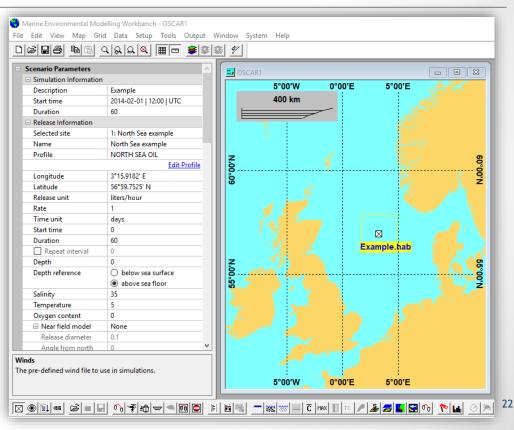
Case #2 - Field B

Field B - Norwegian oil field

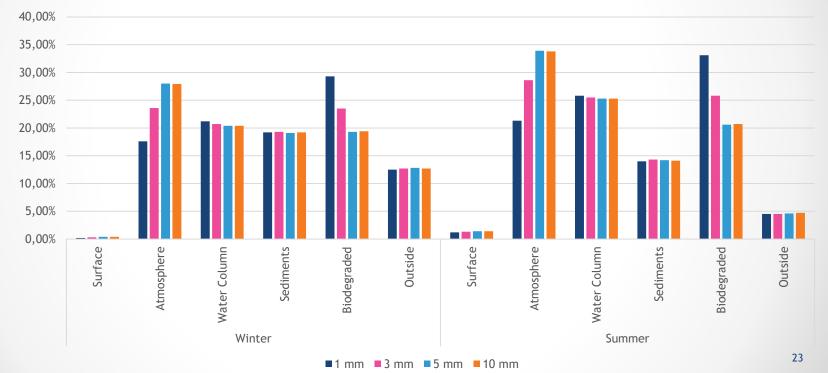
- Theoretical leak
- Real data on
 - Fluid composition
 - Current / wind data
 - Temperature data
- Leak rates:
 - 0.01, 0.1 and 1.0 l/h
- Droplet sizes:
 - 1, 3, 5 and 10 mm

Natural seepage

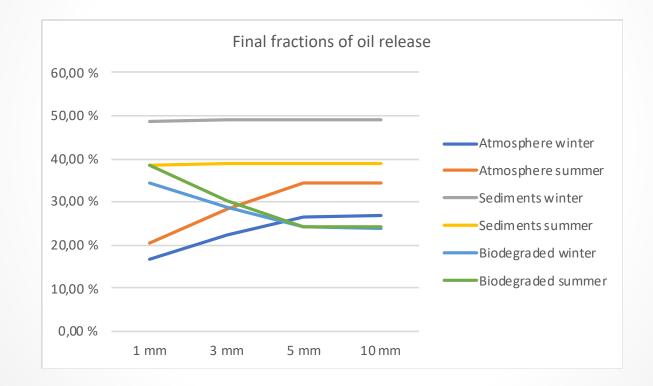
- No oil seep reports on the NCS
- Data from the GoM / Offshore California


Stalagmites of oil / tar seeping through white, bacterial mats Credit: NOAA Okeanos Explorer Program, Gulf of Mexico 2012

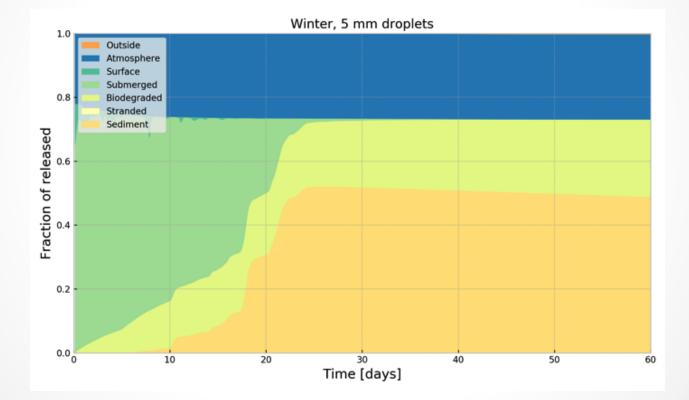
21

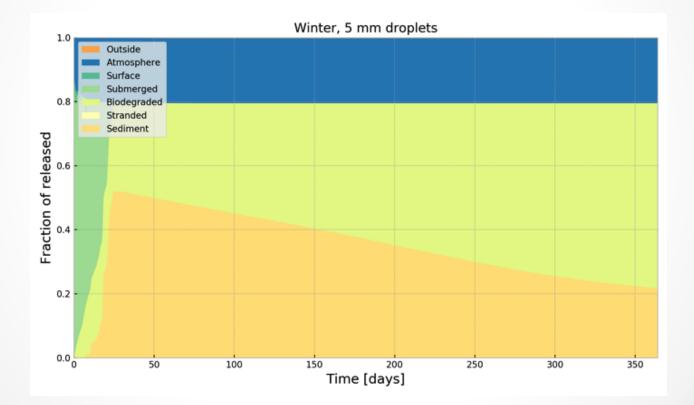

OSCAR

- Oil Spill Contingency And Response
- Create a release scenario
- Release profile (pollutant)

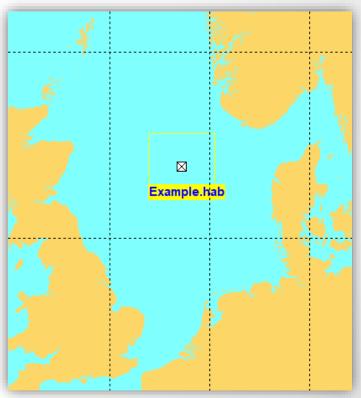


Mass balance results during release


Mass balance day 90


Mass balance results after release

After 5 day release of 1.0 l/h


After 5 day release of 1.0 l/h

University of Stavanger

Concentration data

- Oil is persistant in the environment
 - \rightarrow travels over large distances
 - ightarrow high level of dilution
 - → 4% / 13% outside the grid (grid size 200 km x 200 km)
- Toxicity dependent on concentration, different benchmark values exist

Summary

Gas leaks

- May already be occurring in abandoned wells
- Studied rates are small compared to natural seepage
- 95 99 % dissolves in the ocean, may diffuse to atmosphere at later stage
- Dissolved gas = nutrient

Oil leaks

- No oil seepage on the NCS
- Released oil travel over large distances
- Dilutes quickly into small concentrations
- Oil is very persistent in the environment

Both cases: Fate is dependent on initial bubble / droplet size, not leak rate

Summary

- If a leak happens, what is your course of action?
- Is it possible to evaluate the rate and the consequences, before deciding on a reabandonment?
- The information and methodology here should be used by others to evaluate consequences
- I draw no conclusions, but believe actions should be based on knowledge!

Zero harm = Zero leak?

Thank you!

Questions?

References

- Etiope, G. 2015. *Natural Gas Seepage*, 1. Switzerland: Springer International Publishing (Reprint).
- Faksness, L.-G., Brandvik, P.J., Daling, P.S. et al. 2016. The value of offshore field experiments in oil spill technology development for Norwegian waters. *Marine Pollution Bulletin* 111 (1): 402-410. https://doi.org/10.1016/j.marpolbul.2016.07.035.
- Hornafius, J.S., Quigley, D., and Luyendyk, B.P. 1999. The world's most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): Quantification of emissions. *Journal of Geophysical Research: Oceans* 104 (C9): 20703-20711. <u>https://doi.org/10.1029/1999JC900148</u>.
- Hovland, M., Jensen, S., and Fichler, C. 2012. Methane and minor oil macro-seep systems Their complexity and environmental significance. *Marine Geology* 332-334: 163-173. https://doi.org/10.1016/j.margeo.2012.02.014.
- Judd, A. and Hovland, M. 2007. Seabed fluid flow: the impact on geology, biology, and the marine environment. Cambridge: Cambridge University Press (Reprint).
- National Research Council (U.S.). 2003. Oil in the sea III : inputs, fates, and effects. Washington, D.C: National Academy Press (Reprint).
- Schneider von Deimling, J., Rehder, G., Greinert, J. et al. 2011. Quantification of seep-related methane gas emissions at Tommeliten, North Sea. *Continental Shelf Research* 31 (7): 867-878. <u>https://doi.org/10.1016/j.csr.2011.02.012</u>
- Vielstädte, L., Haeckel, M., Karstens, J. et al. 2017. Shallow Gas Migration along Hydrocarbon Wells-An Unconsidered, Anthropogenic Source of Biogenic Methane in the North Sea. *Environmental Science & Technology* 51 (17): 10262-10268. <u>https://doi.org/10.1021/acs.est.7b02732</u>.

Contact information

Mari Røstvig Tveit MSc, Drilling and Well technology

> mtveit@gmail.com +47 411 04 870

Dr. Mahmoud Khalifeh Associate professor, UiS

<u>mahmoud.khalifeh@uis.no</u> +47 471 51 930

Thesis: http://hdl.handle.net/11250/2567 <u>449</u>

https://www.linkedin.com/in/mari tveit/