

The Research Council of Norway

Bismuth based barrier materials – Initial Results from 3rd party testing in SWIPA

OFFSHORE NORGE

10th Norwegian Plug & Abandonment Seminar

Stavanger, October 20, 2022

Sigbjørn Sangesland- NTNU, Nils Opedal- SINTEF, Noralf Vedvik- NTNU, Behzad Elahifar- NTNU PhD students-NTNU: Lewaa Hmadeh, Andriani Manataki

Well Plugging – Potential options using low-temperature melting alloys (Bismuth)

Potential use of Bismuth in P&A

Universitetet

i Stavanger

Requirements for P&A

Ref. NORSOK D-010, Chapter 9.6. Several requirements including point f) "Ensure bonding to steel"

- BiSn alloys has no or limited bonding to steel, but
- Volume / radial expansion of BiSn may provide friction and sealing capabilities equivalent to "bonding to steel"

Stavan

Ongoing /planned activities using Bismuth

Laboratory tests and modelling:

1. Expansion performance in pipes (casing) and friction tests in casing (bonding).

2. Interaction between bismuth/casing/(cement or settled baryte, cement chunks)/formation, and how the interaction is affecting sealing along the bore hole section

Bismuth Alloys

- ✓ Bismuth and its combination with other metals, form alloys with different melting points
- Alloys of bismuth can expand, shrink, or remain dimensionally stable on solidification and this depends on the composition of each chemical element of the alloy.

 $\Delta 11_{OV}$

	THOY				
Time after Casting	$47^{\circ}\mathrm{C}$	$70^{\circ}C$	$138^{\circ}\mathrm{C}$	138/170°C	
6 min	-0.00025	0.00490	-0.00010	0.00030	
20 min	-0.00030	0.00565	.00000	0.00035	
1 h	-0.00025	0.00570	0.00015	0.00060	
8 h	-0.00020	0.00600	0.00045	0.00095	
1 day	-0.00015	0.00615	0.00060	0.00105	
1 month	0.00025	0.00635	0.00090	0.00120	
^a Cumulative changes, ind	ches per inch relat	ive to cold mold	dimensions. Test	bar $\frac{1}{2} \times \frac{1}{2} \times 10$ in.	
$(1.27 \times 1.27 \times 25.4 \text{ cm}).$		Encyclopedia of (Chemical Technology, I	Kirk Othmer	

Growth and Shrinkage of Low-Melting Alloys

Properties of Low-Melting Bismuth Alloys

Allow

	11109				
Property	47°C	70°C	138°C	$138/170^{\circ}\mathrm{C}$	
melting point or range, °C (°F)	47.5 (117)	70 (158)	138.5 (281)	138.5–170 (281–338)	
density, lb/in. ³ (g/cm ³) specific heat, cal/g·C ^a	0.34 (9.36)	0.35 (9.67)	0.31 (8.58)	0.30 (8.21)	
solid	0.039	0.035	0.040	0.043	
liquid	0.047	0.044	0.048	0.051	
heat of fusion, cal/g	8.8	9.5	10.7	10.6	
coefficient of thermal expansion, 1×10 ⁻⁶ °C	25	22	15	15	
thermal conductivity	0.035	0.043	0.044	0.071	
electric conductivity (% of pure copper)	3.09	3.54	2.88	5.00	
resistivity, μΩ·cm	55.0	48.0	59.0	34.0	
Brinell hardness (2-mm ball, 4-kg load)	14.5/16.5	13/14.5	23/23	23.5/24	
tensile strength, lb/in. ² (Pa) ^b	4868-5337	2668-3775	8701-9013	8459-9041	
maximum sustained load, lb/in. ² (Pa) ^b					
30 s	NA^{c}	10,000	15,000	15,000	
300 s	NA^{c}	4,000	9,000	9,500	

^aTo convert calories to joules, multiply by 4.184.

^bTo convert pounds force per square inch to pascals, multiply by 6.895×10³.

"Not available.

Encyclopedia of Chemical Technology, Kirk Othmer

Properties

of Bismuth Alloys

Norwegian University of Science and Technology

Bismuth Alloy Plug Set-up

Pipe Properties (X-52)	Value			• 2.4 m • •	+
Length	25 cm	Plug Properties (MCP 137)	Value	5,4 cm	
	E 77 cm	Melting Point	135 °C	12.1 cm	15,5 cm til sand top
	5,77 CIII	Density	8,58 g/cm3	BiSn	
Outer Diameter	6,080 cm		, 8,		ŧ

9,5 Sand

Laboratory tests

- Plug testing
 - Mechanical Push-Out Test
 - Hydraulic Push-Out Test
 - Leakage Testing using Nitrogen gas

i Stavange

Plug Testing Specifications

Plug Length	Cement	Pure Bismuth	Bismuth Alloy
cm	18.5	12.1	12.1

Shear Bond Strength Calculations:

Shear Bond Strength = $\frac{Force}{Contact area}$

$$\tau_{av} = \frac{F}{\pi * D_i * L_c}$$

Where:

F: failure load applied

Di: inner diameter of the pipe, or outer diameter of the plug

Lc: length of the plug

Universitetet

i Stavange

Mechanical Push-Out Test - Setup

Mechanical Push-Out - Results

Mechanical Push-Out

Material	Avg. Roughness [μm] - Ra	Length [cm]	Contact Area [cm2]	Axial Load [kN]	Shear Bond Strength [MPa]
Portland G- Cement	1,2	18,5	335,3	17,71	0,53
Bismuth Alloy-137	0,855	12,1	219,3	67.8	3,09

Comments:

• Bismuth alloy shows a higher resistance to axial load compared to cement

Hydraulic push out test- Setup

Test cylinder and pump

The pump used delivers ultra-precise, pulse-free, continuous flow in either constant-pressure or constant-rate modes, at up to 25,000 psi.

Pump	Max Pressure, psi	Flow Rate, ml/min	Hi-Temp Available?
VP-3K	3,500	0.0001 - 97	YES
VP-6K	6,500	0.0001 - 54	YES
VP-12K	12,000	0 0001 - 29	YES
VP-20K	20,000	0.0001 - 12	NO
VP-25K	25,000	0.0001 - 12	NO

Operating Conditions	Value
Flow Conditions	Continuous Flow
Flow Rate Set	0.4 ml/min
Safety Pressure Set	200 bar

Norwegian University of Science and Technology

Hydraulic Push-Out Test- Results

Hydraulic Push-Out Test

Test	Hydraulic bond strength [MPa]
Cement	0,632
Bismuth 1	5,551
Bismuth 2	6,968
Bismuth 3	5,435

The shear bond strength of bismuth alloys ranges between 2.07-26.2 MPa. On an average the bismuth alloys have a shear bond strength of 8.44 MPa *(Ref. MatWeb,2022)*

Comments:

- Bismuth alloy shows significant greater strength compared to cement
- Plug shear/hydraulic bond failure were clearly detected during this test

Leakage Testing using N2 Gas - Setup

Leakage Testing using N2 Gas – Initial Results

: C+

F2

The Research Council of Norway

Centre for

Innovation

Research-based

Subsurface Well Integrity

Leakage Testing using N2 Gas – Results Combined

SINTEF N R C E

Subsurface Well Integrity Plugging and Abandonment

Conclusions:

Norwegian University of

Science and Technology

 Bismuth alloy plugs show higher resistance to gas migration in the micro-annuli compared to cement, see details in previous slide

F?

Institute for Energy Technology

Universitetet

i Stavanger

Centre for

Innovation

Research-based

51

Hydraulic Plug Testing- Effect of Curing time

Hydraulic Plug Testing- Enlargement of Pipe Diameter

Plug Testing (continuation)

- Gas leak tests
- Effect of increased plug length
- Effect of pipe inner surface
- Increased inner pipe diameter (forced local corrosion)
- Restricted axial expansion / re-enforcement
- Alternative Bismuth alloys
- Standard casing size (5 inch)
- Testing using high pressure gas (30 MPa)

Annular Sealing Experiments – Cement w/ micro-annulus /Settled baryte

Sealing tests

• Effect of inner casing pressure to close/reduce micro annulus, or compress settled baryte (micro baryte) for proper sealing

For P&A

• Expanding Bi-Sn alloy plug in the inner casing may provide the radial force / pressure needed

Annular Sealing Experiments – cement chunks/ poor-quality cement

Sealing tests

 Place / Inject Bismuth alloy in annulus w/ or wo/ additional pressure to repair annulus sealing

For P&A

• Expanding Bismuth alloy plug in the inner casing may provide the radial force / pressure needed for proper sealing

Bubble Test

Goal:

Investigate how flow of gas through a column of Bismuth with low melting point (60°C) will affect the sealing during solidifications

i Stavanger

3rd party verification tests in SWIPA

Test facilities available and specific test cells used for the study:

Research Council grant MNOK 77, period 2020-2023

- Existing test cells (2 5) inches
- Heat chamber size, small and large (1,5 x 1,5 x 2,5) m, 250 °C
- Hydraulic pressure: 827 bar (12k Psi)
- Push-out test: 400 tons
- Gas pressure test: 300 bar max (require small gas volume in test sample)
- New test cells Standard casing sizes (limited by the size of heat chamber)

Science and Technology